2/7x+3=9/2x-5

Simple and best practice solution for 2/7x+3=9/2x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/7x+3=9/2x-5 equation:



2/7x+3=9/2x-5
We move all terms to the left:
2/7x+3-(9/2x-5)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 2x-5)!=0
x∈R
We get rid of parentheses
2/7x-9/2x+5+3=0
We calculate fractions
4x/14x^2+(-63x)/14x^2+5+3=0
We add all the numbers together, and all the variables
4x/14x^2+(-63x)/14x^2+8=0
We multiply all the terms by the denominator
4x+(-63x)+8*14x^2=0
Wy multiply elements
112x^2+4x+(-63x)=0
We get rid of parentheses
112x^2+4x-63x=0
We add all the numbers together, and all the variables
112x^2-59x=0
a = 112; b = -59; c = 0;
Δ = b2-4ac
Δ = -592-4·112·0
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3481}=59$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-59)-59}{2*112}=\frac{0}{224} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-59)+59}{2*112}=\frac{118}{224} =59/112 $

See similar equations:

| y+3/5=11/10 | | 2x-9/3x-2=-3 | | 3x+6/4x+8=7 | | x=2/x+3=4 | | 12-3y=8 | | 1/295x=7)=3/4(3x-10 | | 3(2+5x)/4=2(6x-3)=5 | | 30y^2+50y=0 | | x-4x1=-4 | | 3a-7=-2a+5 | | 3a-7=2a+5 | | 10-6(8x-20)=9x-(3+4x) | | q-7*3=30 | | -6(3-4x)=8(X+11) | | p/485+170=2500 | | 9x-8x=6-16 | | 2z/9+4=-7 | | 13y-2y=99 | | X2+7x=45-2x | | 10-5x=7-6x | | 5-9x=15-8x | | x+10/8=11 | | 4(x+2)=6-2x | | 5(x-3)=7+4x | | 32x^2-58x+8=0 | | 4(x-2)=6+2x | | 9+7x=4(x+6) | | 8x+7=5x+11 | | 31/3x-1/6=5/12 | | 4+4x=2(x+3) | | 3x+8=2(x+3) | | 6(x+3)=2x+6 |

Equations solver categories