2/9c+1/3c=1/8

Simple and best practice solution for 2/9c+1/3c=1/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/9c+1/3c=1/8 equation:



2/9c+1/3c=1/8
We move all terms to the left:
2/9c+1/3c-(1/8)=0
Domain of the equation: 9c!=0
c!=0/9
c!=0
c∈R
Domain of the equation: 3c!=0
c!=0/3
c!=0
c∈R
We add all the numbers together, and all the variables
2/9c+1/3c-(+1/8)=0
We get rid of parentheses
2/9c+1/3c-1/8=0
We calculate fractions
(-81c^2)/1728c^2+384c/1728c^2+576c/1728c^2=0
We multiply all the terms by the denominator
(-81c^2)+384c+576c=0
We add all the numbers together, and all the variables
(-81c^2)+960c=0
We get rid of parentheses
-81c^2+960c=0
a = -81; b = 960; c = 0;
Δ = b2-4ac
Δ = 9602-4·(-81)·0
Δ = 921600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{921600}=960$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(960)-960}{2*-81}=\frac{-1920}{-162} =11+23/27 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(960)+960}{2*-81}=\frac{0}{-162} =0 $

See similar equations:

| W^2+5w+25/4=0 | | 3x+77=4x+101 | | 26-4(4x-2)=2 | | x-3/x+1=6/7 | | 3x×5=2x+2 | | 2x+8/3=-4 | | 9v+6=69 | | 180+4x-50=2x-2x | | 2x+3x+27=4x-40 | | 176=-8(8x+6) | | 15x+225=14x-131 | | 15/6−(x−7/12)+21/12=0.9 | | 2x+1+3x+7=180 | | 11x+100=2x+11 | | 5c-(2c+100)=4c-2(15+c) | | 9(x+3)-6=3x+6(3+x) | | $6.40/$0.80=x | | 5x+(x-24)=90 | | 7x+3=2x+20 | | -5+w=-9 | | -9b-5=4 | | -2(4t-4)+5t=7t-9 | | 2x2+9x+12=0 | | 7p+3-1=16 | | 3x+6=76+2 | | 2(2t+19)=14 | | 23x+2=48 | | 49+3x+x=5 | | 7x+2=7(3)+2= | | -9x+1=-1 | | -5(x+3/5)=-4 | | 9x+x=70-50 |

Equations solver categories