2/9n-4/15=1/6n+1

Simple and best practice solution for 2/9n-4/15=1/6n+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/9n-4/15=1/6n+1 equation:



2/9n-4/15=1/6n+1
We move all terms to the left:
2/9n-4/15-(1/6n+1)=0
Domain of the equation: 9n!=0
n!=0/9
n!=0
n∈R
Domain of the equation: 6n+1)!=0
n∈R
We get rid of parentheses
2/9n-1/6n-1-4/15=0
We calculate fractions
(-1296n^2)/810n^2+180n/810n^2+(-135n)/810n^2-1=0
We multiply all the terms by the denominator
(-1296n^2)+180n+(-135n)-1*810n^2=0
Wy multiply elements
(-1296n^2)-810n^2+180n+(-135n)=0
We get rid of parentheses
-1296n^2-810n^2+180n-135n=0
We add all the numbers together, and all the variables
-2106n^2+45n=0
a = -2106; b = 45; c = 0;
Δ = b2-4ac
Δ = 452-4·(-2106)·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2025}=45$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-45}{2*-2106}=\frac{-90}{-4212} =5/234 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+45}{2*-2106}=\frac{0}{-4212} =0 $

See similar equations:

| 6+7q=3q-4+2 | | -3y+2=2y-18 | | 5(x-3)=4(3x+5) | | 4x-2+95=11x+16 | | -25+20-12x=-70 | | 1+2n-4=-19 | | -2j=-j+3 | | X-8+2x=26 | | 3y/7-1=8 | | q+6=-9-4 | | X-8+2x=16 | | 3(-9-4n)-4=8n-9(n+120 | | 40+25x=35x | | 12/5y-8=3/5y+10 | | X=0+2y | | 3(5+7m)=-132 | | 1/2(10x+4)=27 | | 1​(10x+4)=27 | | 2(c+6)=–2 | | d^2=31 | | 17.5/1=1.5/x | | 7n-38=-3(-5n+4)-2 | | 14y-14=4y | | 15−5(4c−7)=10 | | -11v=-154 | | -1.2(10-5x)=14x-52 | | 57=-10z+8 | | x-4+x-4+x=16 | | –8m=–56 | | -3a+20=2a | | 1000000=150x | | 3(j+18)-10=8 |

Equations solver categories