2/9x+5=7x-90

Simple and best practice solution for 2/9x+5=7x-90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/9x+5=7x-90 equation:



2/9x+5=7x-90
We move all terms to the left:
2/9x+5-(7x-90)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
We get rid of parentheses
2/9x-7x+90+5=0
We multiply all the terms by the denominator
-7x*9x+90*9x+5*9x+2=0
Wy multiply elements
-63x^2+810x+45x+2=0
We add all the numbers together, and all the variables
-63x^2+855x+2=0
a = -63; b = 855; c = +2;
Δ = b2-4ac
Δ = 8552-4·(-63)·2
Δ = 731529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{731529}=\sqrt{9*81281}=\sqrt{9}*\sqrt{81281}=3\sqrt{81281}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(855)-3\sqrt{81281}}{2*-63}=\frac{-855-3\sqrt{81281}}{-126} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(855)+3\sqrt{81281}}{2*-63}=\frac{-855+3\sqrt{81281}}{-126} $

See similar equations:

| -73=-8(6p-1)+(2p+1) | | 8+4x-4x=-4x+6x | | 0.5(6x-3)=391+x) | | -40=y+49 | | 5(x+8)+3=-5(x-1)-5 | | 3+11/12a=36 | | 350/x=364 | | 66=4m-2 | | 2(9+4x)+6+(2-x)=7x | | 9x+3=-5x-11 | | -11-2h+21=-8 | | E^x=14.8 | | 5x+5=6x+21 | | 15+125y=174 | | -n+9n=8 | | 1/8x=-34/24 | | 8(x-6)-4=-3(x+3) | | 1/2x+1/16=3/8-5/4 | | 15+125y=1748 | | -4(3v+1)=92 | | 15+25y=163 | | 15+25y=349 | | 15+25y=16 | | 138=5(-3x+2)-x | | 4t​=2 | | 6x-104x=14 | | x-0.1x=8 | | 15+25y=17 | | 3(2z-7)=5z+17z | | 2(b-6)=3(b+7) | | j3− 5=–1.9 | | -6(-3x+3)=108 |

Equations solver categories