2/9x-7=3/11x

Simple and best practice solution for 2/9x-7=3/11x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/9x-7=3/11x equation:



2/9x-7=3/11x
We move all terms to the left:
2/9x-7-(3/11x)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 11x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2/9x-(+3/11x)-7=0
We get rid of parentheses
2/9x-3/11x-7=0
We calculate fractions
22x/99x^2+(-27x)/99x^2-7=0
We multiply all the terms by the denominator
22x+(-27x)-7*99x^2=0
Wy multiply elements
-693x^2+22x+(-27x)=0
We get rid of parentheses
-693x^2+22x-27x=0
We add all the numbers together, and all the variables
-693x^2-5x=0
a = -693; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·(-693)·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*-693}=\frac{0}{-1386} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*-693}=\frac{10}{-1386} =-5/693 $

See similar equations:

| 5(x=8)=-10 | | 24-6x=4x-7 | | 7-8x+22=0 | | -4-3j=-5j | | 5u=-3u-8 | | -5p+10=-3p-8 | | 9+2-5k=-k-9 | | 6-6z=-7z | | 10+5k=3k | | g+6=2+2g | | -7+7v=8v | | 0.03×0.06=n | | 10d+4=8d | | 38/x=19 | | x+2x+3x+4x=350 | | 7.5x-0.8=5.6+3.95 | | 4x-72=x+9 | | 4^x-16^x-2=0 | | X=120/y | | X-4=120/y | | 0.8+0.5x=1.5+0.3x | | Y=120/(x-4) | | .2x=286-x | | 5x-2-(x-1)=3x+4 | | 65x+29=−1 | | 6/5x+2/9=−1 | | 13w=12 | | (17-2y)+2y=17 | | 17z=8 | | x/2-1/3=1/6 | | 2/5=x-4/15 | | -28=w/5+2 |

Equations solver categories