2/h-7=12/h-2h+3

Simple and best practice solution for 2/h-7=12/h-2h+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/h-7=12/h-2h+3 equation:



2/h-7=12/h-2h+3
We move all terms to the left:
2/h-7-(12/h-2h+3)=0
Domain of the equation: h!=0
h∈R
Domain of the equation: h-2h+3)!=0
h∈R
We add all the numbers together, and all the variables
2/h-(-2h+12/h+3)-7=0
We get rid of parentheses
2/h+2h-12/h-3-7=0
We multiply all the terms by the denominator
2h*h-3*h-7*h+2-12=0
We add all the numbers together, and all the variables
-10h+2h*h-10=0
Wy multiply elements
2h^2-10h-10=0
a = 2; b = -10; c = -10;
Δ = b2-4ac
Δ = -102-4·2·(-10)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{5}}{2*2}=\frac{10-6\sqrt{5}}{4} $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{5}}{2*2}=\frac{10+6\sqrt{5}}{4} $

See similar equations:

| |2x–6|=4x+4| | | j/–27=13 | | 7+5(2-6k)=137 | | 14=26-2n | | 13(y=3(y−1) | | -3(8p+4)-2(6-17p)=3(4+3p) | | 4(3c+5)=2(10-c) | | 5(z+5)=8z+1 | | 13(y+7)=39y−1) | | 1/3x+4=5x-1 | | 14-v/3=2 | | -7.8x-10=5.2−2(−4x−8.6)−5x | | 1x-2=20 | | 3/4(2x-9)+5/8=3/2x+1-4 | | −25−7x=6(2x−1) | | 5y−y=4 | | 8a+1=42a | | (-10x-8)/2=-2 | | -1+2x-x=x-8+(-8) | | 130=x+52 | | p/5–39=48 | | -1.5+-0.5=x-8 | | 4x+-3=-5+3 | | (-10x-8)/2=2 | | 6x+92=92+6x | | y/5+8=37 | | 113+t=-26 | | 7v−4v=12 | | 4x+2+2x-4=180 | | 893=k+471 | | -3(6-x)+9=12 | | x9=2 |

Equations solver categories