2/x+1/3x=7/6

Simple and best practice solution for 2/x+1/3x=7/6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/x+1/3x=7/6 equation:



2/x+1/3x=7/6
We move all terms to the left:
2/x+1/3x-(7/6)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
2/x+1/3x-(+7/6)=0
We get rid of parentheses
2/x+1/3x-7/6=0
We calculate fractions
(-63x^2)/108x^2+216x/108x^2+36x/108x^2=0
We multiply all the terms by the denominator
(-63x^2)+216x+36x=0
We add all the numbers together, and all the variables
(-63x^2)+252x=0
We get rid of parentheses
-63x^2+252x=0
a = -63; b = 252; c = 0;
Δ = b2-4ac
Δ = 2522-4·(-63)·0
Δ = 63504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{63504}=252$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(252)-252}{2*-63}=\frac{-504}{-126} =+4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(252)+252}{2*-63}=\frac{0}{-126} =0 $

See similar equations:

| 14.2=0(-5.8+t | | V=63-8v | | 5(x-4)+2=14 | | 20+3v=8v | | 4y-4=12y-6 | | -14.3=-14-3d | | 0.26x=37 | | -x=0.13 | | 4r+r+5=60 | | x-7+14=22 | | w+13=11w−7w+13=11w−7. | | 21=v/4+11 | | w+13=11w−7w+13=11w−7 | | -1/2=2/5v-4/7 | | 28(x+2)=x-2 | | 500+60x=100x | | -38r=-190 | | 4m+3=4m+5 | | 103=5w+13 | | 150+25x=125+25x | | 2(x+1)^2-1=71 | | 11n+7n-13n=65 | | 11n+7n+4n=65 | | 2/3x-5=1/6x+2 | | 5n^2=4-8n | | 5.6=8m | | (3x-15)+(2x+36)=180 | | 8x+2=5x=11 | | 126=1/2(108+x) | | x-9=20x-4 | | 15=b8 | | c=800+(.8*10000) |

Equations solver categories