2/x+17/5x=27/20

Simple and best practice solution for 2/x+17/5x=27/20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/x+17/5x=27/20 equation:



2/x+17/5x=27/20
We move all terms to the left:
2/x+17/5x-(27/20)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
2/x+17/5x-(+27/20)=0
We get rid of parentheses
2/x+17/5x-27/20=0
We calculate fractions
(-675x^2)/200x^2+400x/200x^2+680x/200x^2=0
We multiply all the terms by the denominator
(-675x^2)+400x+680x=0
We add all the numbers together, and all the variables
(-675x^2)+1080x=0
We get rid of parentheses
-675x^2+1080x=0
a = -675; b = 1080; c = 0;
Δ = b2-4ac
Δ = 10802-4·(-675)·0
Δ = 1166400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1166400}=1080$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1080)-1080}{2*-675}=\frac{-2160}{-1350} =1+3/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1080)+1080}{2*-675}=\frac{0}{-1350} =0 $

See similar equations:

| (4^x)(3^(2x))=6 | | 6x=2+x50 | | (2^x)^3=2^7 | | -1/3(9x+42)-5x=-70 | | 4-3(2-y)=2(3+y) | | 12x+5=+2x | | 45r=9r-53 | | 2=1.06^t | | X^2/4-x=3 | | 2(x+2)-6x=28 | | 7x-2=225 | | Z3-7z3/2-8=0 | | 25=7+k-12 | | 3-4y=8y+3 | | (4x)(32x)=6 | | x^2+58=10 | | 4x-4=0.5x-4 | | 6=4+1/3a | | 4/5×x/5=15/5 | | 9+6n=7n+3 | | 2x+3+x=5x+11 | | 42x^2+x−1=0 | | 3w/4=15 | | -6a+5=-4a | | x/2-3=-8 | | x+180=18 | | -5x^2+10x+143=0 | | √2/2=7/x | | m+5=-5+5 | | 7+2x-x=-9+x | | ​3/1+a=​3/​5​​ | | 13a=76.5 |

Equations solver categories