2/x-2-1=2x+1/x+1

Simple and best practice solution for 2/x-2-1=2x+1/x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/x-2-1=2x+1/x+1 equation:



2/x-2-1=2x+1/x+1
We move all terms to the left:
2/x-2-1-(2x+1/x+1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x+1)!=0
x∈R
We add all the numbers together, and all the variables
2/x-(2x+1/x+1)-3=0
We get rid of parentheses
2/x-2x-1/x-1-3=0
We multiply all the terms by the denominator
-2x*x-1*x-3*x+2-1=0
We add all the numbers together, and all the variables
-4x-2x*x+1=0
Wy multiply elements
-2x^2-4x+1=0
a = -2; b = -4; c = +1;
Δ = b2-4ac
Δ = -42-4·(-2)·1
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{6}}{2*-2}=\frac{4-2\sqrt{6}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{6}}{2*-2}=\frac{4+2\sqrt{6}}{-4} $

See similar equations:

| (3x-15)=(x+19) | | 8(x+1)-3(x+4)=7 | | 1x+1x+1x+1x+8+8=-2x+-2x+-2x+2x+20+20 | | 8/11=6/x | | 14.5=3a/4 | | 14,5=3a÷4 | | (5x-8)=(3x+10) | | 12*(-1)^2+y^2+4*(-1)=0 | | (2x+80)=7x | | 12+y^2-4=0 | | (3x-5)=(3x+25)=2x | | 0.1x-x^2=319.5 | | y+(y*0.15)=1803 | | |x|-7|x|+12=0 | | -11+3x=10,x=7 | | -11+3x=10;x=7 | | 3/2x-10=4x | | 64=6x+4;x | | -4(-6x+8)+6x=148 | | 3x+3/2=x/5+8 | | 3x+32=x5+8 | | x=((5/10)*(4/9)*(3/8)) | | x=5/10*4/9*3/8 | | 5/10*4/9*3/8=x | | -2a+4=-2 | | x+20=2(x+20) | | 12^(x-4)=4^x | | 9x(x)=4.5 | | 9Xx=4.5 | | 2(a+1)=3(2a-1) | | 3-9y-5y=-11 | | 5a+9=5+3a |

Equations solver categories