2/x2-9+1/x-3-2/x+3

Simple and best practice solution for 2/x2-9+1/x-3-2/x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2/x2-9+1/x-3-2/x+3 equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

1/x-(2/x)+2/(x^2)-9-3+3 = 0

1/x-2*x^-1+2/(x^2)-9-3+3 = 0

2*x^-2-x^-1-9 = 0

t_1 = x^-1

2*t_1^2-1*t_1^1-9 = 0

2*t_1^2-t_1-9 = 0

DELTA = (-1)^2-(-9*2*4)

DELTA = 73

DELTA > 0

t_1 = (73^(1/2)+1)/(2*2) or t_1 = (1-73^(1/2))/(2*2)

t_1 = (73^(1/2)+1)/4 or t_1 = (1-73^(1/2))/4

t_1 = (1-73^(1/2))/4

x^-1-((1-73^(1/2))/4) = 0

1*x^-1 = (1-73^(1/2))/4 // : 1

x^-1 = (1-73^(1/2))/4

-1 < 0

1/(x^1) = (1-73^(1/2))/4 // * x^1

1 = ((1-73^(1/2))/4)*x^1 // : (1-73^(1/2))/4

4*(1-73^(1/2))^-1 = x^1

x = 4*(1-73^(1/2))^-1

t_1 = (73^(1/2)+1)/4

x^-1-((73^(1/2)+1)/4) = 0

1*x^-1 = (73^(1/2)+1)/4 // : 1

x^-1 = (73^(1/2)+1)/4

-1 < 0

1/(x^1) = (73^(1/2)+1)/4 // * x^1

1 = ((73^(1/2)+1)/4)*x^1 // : (73^(1/2)+1)/4

4*(73^(1/2)+1)^-1 = x^1

x = 4*(73^(1/2)+1)^-1

x in { 4*(1-73^(1/2))^-1, 4*(73^(1/2)+1)^-1 }

See similar equations:

| -1-3/4k=-25/16 | | 2=h-3/2 | | -9(u+1)=-7u-17 | | 8v-2v-2=16 | | x=3118/61 | | 4x+2y^3=16 | | 4x^2-20=-16 | | 3t+7t=-20 | | y=-t+1 | | 3(y+2)-7y=-10 | | 12s-11s-1=7 | | 2(x/2+0.03x)=2(245) | | 5c+7c--6=18 | | 40=49-2(-8q-4) | | 8h-4h=16 | | 5w+8-12w= | | -3+2=-10u+30 | | .14-(-2)= | | 9-2/2=3 | | 6+5v=-4 | | -5/7x-7=-247/56 | | 19-q=11 | | 2(p+1)=8 | | (4x+20)/2-(3x+6)/4=-1 | | 7/2-z/9=5/18 | | 0.10(y-2)+0.18y=0.20y-0.4 | | ((5x+5)/(3)/((6)/(40x+40))) | | (-15)-4x=6-3x | | 17x=12x+5000 | | 6x-18=4x+2(2x-11) | | 6-2y=19-y | | 16+24/8-5=14 |

Equations solver categories