20*3/5y+8y=500

Simple and best practice solution for 20*3/5y+8y=500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20*3/5y+8y=500 equation:



20*3/5y+8y=500
We move all terms to the left:
20*3/5y+8y-(500)=0
Domain of the equation: 5y!=0
y!=0/5
y!=0
y∈R
We add all the numbers together, and all the variables
8y+20*3/5y-500=0
We multiply all the terms by the denominator
8y*5y-500*5y+20*3=0
We add all the numbers together, and all the variables
8y*5y-500*5y+60=0
Wy multiply elements
40y^2-2500y+60=0
a = 40; b = -2500; c = +60;
Δ = b2-4ac
Δ = -25002-4·40·60
Δ = 6240400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6240400}=\sqrt{400*15601}=\sqrt{400}*\sqrt{15601}=20\sqrt{15601}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2500)-20\sqrt{15601}}{2*40}=\frac{2500-20\sqrt{15601}}{80} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2500)+20\sqrt{15601}}{2*40}=\frac{2500+20\sqrt{15601}}{80} $

See similar equations:

| 6+4x=10x-12 | | y*3/5=25+-0.4y | | 3y/5=25+-0.4y | | 2(3x-1)-x=-4(2+x) | | 2(x–7)+2x=18 | | x^-6x-5=0 | | x2−8x+72=0 | | 67/x=2 | | 74/x=3 | | 74/x=2 | | 41/x=2 | | 5x(x-1)=5x2-(8-3x) | | 5x(x-1)=5x*2-(8-3x) | | 3/4=3/*x-2/5 | | 5+9k=-13 | | 12+7c=-16 | | -x2+18X+19=0 | | 5-2x=-x | | 3(4-2x)=6-8x | | 7k+5=19 | | 2^(x-4)=6 | | 2^-x+3(2x)=0 | | -6-(-3x)=6x | | 1/3x-1/4x=7 | | 6-(-3x)=6x | | 60000=x/0.18 | | 1/2x-1/4=x/3+1/6 | | F(20)=7•5h | | n/4+7=-1 | | 2x+3=4(1=x)+5 | | -5m=50=50 | | 5=1717+2+6k+-9k=0 |

Equations solver categories