If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20+20=4x^2
We move all terms to the left:
20+20-(4x^2)=0
We add all the numbers together, and all the variables
-4x^2+40=0
a = -4; b = 0; c = +40;
Δ = b2-4ac
Δ = 02-4·(-4)·40
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*-4}=\frac{0-8\sqrt{10}}{-8} =-\frac{8\sqrt{10}}{-8} =-\frac{\sqrt{10}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*-4}=\frac{0+8\sqrt{10}}{-8} =\frac{8\sqrt{10}}{-8} =\frac{\sqrt{10}}{-1} $
| 53+3x+4=90 | | 3+7x+90=135 | | 0.36x5=1.8 | | 31+2x-5=74 | | 90-26=16x | | 132/y=19 | | c(t)=20t/t^2+4=1 | | 2t^2-5t+8=0 | | 38.75+3.50x=83.75 | | 8t^2-20t+32=0 | | x+15=1/2(9x-42)+30 | | 4=9w-5w | | l=0.7.0.97.1.51.9.69 | | -(2x+13=7 | | 0.5(4w-10)=14 | | 2/3(5c-12)=-10-1/6c | | -2(2+x)=-3(-1+x) | | -19=-5m+6 | | 3^(-6x+5)=111 | | w^2+-3w=-350 | | w^2+-3w=350 | | 4x9=4 | | 6-x/5=0 | | (6x-4)+(5x-8)+x=180 | | 9.6*x=48 | | 3(2m+5)=4m+29) | | (2x+43)+90+(5x+12)=180 | | (2x+43)+90+(1(5x+12)1)=180 | | (4x)+(x+5)+(3x-1)=180 | | c-16(3-29)=432 | | 90+(4x+3)+(3x+10)=180 | | 3u-(-9)=15 |