If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20+m2=254
We move all terms to the left:
20+m2-(254)=0
We add all the numbers together, and all the variables
m^2-234=0
a = 1; b = 0; c = -234;
Δ = b2-4ac
Δ = 02-4·1·(-234)
Δ = 936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{936}=\sqrt{36*26}=\sqrt{36}*\sqrt{26}=6\sqrt{26}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{26}}{2*1}=\frac{0-6\sqrt{26}}{2} =-\frac{6\sqrt{26}}{2} =-3\sqrt{26} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{26}}{2*1}=\frac{0+6\sqrt{26}}{2} =\frac{6\sqrt{26}}{2} =3\sqrt{26} $
| 8=-(x-8)+3 | | -2j+8=-5j-4 | | 02(14-6x)=-7x-(-3-9x) | | 10+5m=6m-10+m | | 6w+2=10+7w | | 10-2-8p=-10p-10 | | 9*9^x=4*4^x | | -10-10k=10-8k | | x-7/9=2/3 | | 9-5s-8s=-9-10s | | 10k+1=10+9k | | 6d+5=7d | | -7(i-3)=42 | | -15(b+12)=15 | | -1=5x+3 | | (3y)(5y+2)=90 | | 6k-9+2=7+4k | | 9^x=4/9*4^x | | -7.18+7.8k=6.1k-9.05 | | -10-10b=-5b+6-7b | | -7p+10=-4-5p | | 6-8z=-10z-8+4z | | 4(2x+3)=5(3x–2) | | -10u+10=-8u-10 | | 0=4/3x+-8 | | 2-3-92x+2=1 | | p(89)=445 | | -5j-5=9-7j | | 2(3y+7+5)=196-6 | | H-s=181/2 | | x^2–17x–18=0 | | -3(m-3)+8m=-91 |