If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20-1/22(2x)=101/22(x)
We move all terms to the left:
20-1/22(2x)-(101/22(x))=0
Domain of the equation: 222x!=0
x!=0/222
x!=0
x∈R
Domain of the equation: 22x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-1/222x-(+101/22x)+20=0
We get rid of parentheses
-1/222x-101/22x+20=0
We calculate fractions
(-22x)/4884x^2+(-22422x)/4884x^2+20=0
We multiply all the terms by the denominator
(-22x)+(-22422x)+20*4884x^2=0
Wy multiply elements
97680x^2+(-22x)+(-22422x)=0
We get rid of parentheses
97680x^2-22x-22422x=0
We add all the numbers together, and all the variables
97680x^2-22444x=0
a = 97680; b = -22444; c = 0;
Δ = b2-4ac
Δ = -224442-4·97680·0
Δ = 503733136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{503733136}=22444$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22444)-22444}{2*97680}=\frac{0}{195360} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22444)+22444}{2*97680}=\frac{44888}{195360} =5611/24420 $
| -22+10(p+10)=4-5(2p+11) | | 2x+14=x+40 | | 5p−2p=9 | | 5x+13=2x-26 | | |10+5b|=10 | | 2x-4(x-3)=-2+3×-6 | | 36-7x=7x(x-5) | | 9x+13=x+65 | | 5^3x-30=27 | | 5+y=43 | | 4(-x+1)=4(1-x) | | 1092y+2)-y=2(8y-8) | | 41=9r-4 | | 4(-x+1)=4(1-x | | 7x+13=x+94 | | -6-24=5x | | 9/5c=82 | | 4a+7+2a=11 | | r-6=-3 | | -17x+8+x=24 | | 1x/3-5=-8 | | e-6=-3 | | (1/2)^x=1/16 | | F(x)=36-8 | | -4(x+4)=16x-64 | | 17x+8=175 | | (1/3a)=7 | | 2-3+y=1-4 | | -2p-4(6-2p)=2(p-3)-34 | | 7a+14=9+2a | | 21n^2+11=-3n+9n+9 | | 0.093x=15 |