20-1/5d=3/10d+6

Simple and best practice solution for 20-1/5d=3/10d+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20-1/5d=3/10d+6 equation:



20-1/5d=3/10d+6
We move all terms to the left:
20-1/5d-(3/10d+6)=0
Domain of the equation: 5d!=0
d!=0/5
d!=0
d∈R
Domain of the equation: 10d+6)!=0
d∈R
We get rid of parentheses
-1/5d-3/10d-6+20=0
We calculate fractions
(-10d)/50d^2+(-15d)/50d^2-6+20=0
We add all the numbers together, and all the variables
(-10d)/50d^2+(-15d)/50d^2+14=0
We multiply all the terms by the denominator
(-10d)+(-15d)+14*50d^2=0
Wy multiply elements
700d^2+(-10d)+(-15d)=0
We get rid of parentheses
700d^2-10d-15d=0
We add all the numbers together, and all the variables
700d^2-25d=0
a = 700; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·700·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*700}=\frac{0}{1400} =0 $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*700}=\frac{50}{1400} =1/28 $

See similar equations:

| 5x+3-3x=x+5 | | 5/4x=4/3x+5/2 | | 2(5x+1)=-3(5x-5 | | -8x+3x+6=4-x | | 80=m+65 | | 4(2x+4)=-4(3x-5)-5x | | 62.7=7(m+2.2) | | x+3=53 | | -20+5x=-3-3x | | 7x-2=5x=12 | | 7x=5x+3x-1 | | 2(4x+3)=-5(4x-3) | | -9.38=c-18.08 | | 5(2x+1)=- | | 2(3x+5)=-3(2x-5)-2x | | s+12=13.8 | | 55−x=44x+25 | | 4j=632 | | u/21=8 | | 3x+53+2=180 | | Y=4x-1+10 | | 423=f+961 | | 3(2x+4)=-4(3x-4)-3x | | 2(4x+4)=-4(4x-3)-3x | | 406=-14r | | 3x+5/x=8 | | 406=14r | | 15x+5+22+4=120 | | 4(4x+1)=-3(4x-5) | | 3(4x+1)=-2(2x-4) | | c-2=15.32 | | 2/3x-5=1/6x+3 |

Equations solver categories