If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20-1t^2=0
a = -1; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-1)·20
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-1}=\frac{0-4\sqrt{5}}{-2} =-\frac{4\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-1} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-1}=\frac{0+4\sqrt{5}}{-2} =\frac{4\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-1} $
| 31/3n+1/3+11/2n=51/6 | | 2*(3x+1)=5x-7 | | 2x+20=38-4 | | 2=4x+3 | | 4*(x+1)=2+10 | | -1=-2x^2+x+1 | | 7x=12-5 | | 7+11x(=5+7) | | -1=2x^2+x+1 | | 7+11x=(5+7) | | 7+11x(5+7=) | | 7+11=x(5+7) | | -55s/88=-1815/88 | | 6(3x+2)-5(6x-1)=2(x-8)-5(7x-6)+8 | | (2x-10)-24=5x-(-6+8x) | | 4(x-1)-(2x-5)=5 | | 4(x-1)-(2x-5)=8 | | -d=1 | | 7+4x=49 | | 11=6c | | -5m+(-7)=-25 | | (n-2)180/n=900 | | (5x)+(4x-9)=180 | | X=3.5-y | | 7x+3-1=56-2 | | 3200(.045)(8)=x | | 4x(2x-4)=7x(1x+5) | | 4x+9=99−6x | | 10*x=17 | | 1500(.04)(3)=x | | 1500(.4)(3)=x | | 0.60x+0.45(20)=0.30(60) |