20-2t=1/2t+28;t=-3.2

Simple and best practice solution for 20-2t=1/2t+28;t=-3.2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20-2t=1/2t+28;t=-3.2 equation:



20-2t=1/2t+28t=-3.2
We move all terms to the left:
20-2t-(1/2t+28t)=0
Domain of the equation: 2t+28t)!=0
t∈R
We add all the numbers together, and all the variables
-2t-(+28t+1/2t)+20=0
We get rid of parentheses
-2t-28t-1/2t+20=0
We multiply all the terms by the denominator
-2t*2t-28t*2t+20*2t-1=0
Wy multiply elements
-4t^2-56t^2+40t-1=0
We add all the numbers together, and all the variables
-60t^2+40t-1=0
a = -60; b = 40; c = -1;
Δ = b2-4ac
Δ = 402-4·(-60)·(-1)
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{85}}{2*-60}=\frac{-40-4\sqrt{85}}{-120} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{85}}{2*-60}=\frac{-40+4\sqrt{85}}{-120} $

See similar equations:

| 11=2/3x-1;x=15 | | 4x-6,x=5 | | 100−3x=-50 | | 6x2-40=110 | | 650=x+0,25x | | -23=x-8 | | -3(v-3)=-5v+13 | | -10=2+b | | 49=x^ | | 11=15x=-7+13x | | 3(y+8)-5y=16 | | -7y-18=-5(y+6) | | -7y-18=-5(y+6 | | 5x+5=2- | | -84=7v | | x^=81 | | -2x-6x-7=4x | | u-5.89=7.2 | | 4=-4+s | | 4-4u=-20 | | 13+1x=11x+9 | | 3/4=(2/4)x | | -5/9q=5 | | 5(v+8)=4 | | 6/7t=-14 | | 0.4x=2.76 | | 3(h+2)=5(3h-2) | | 8-3x=7+2x | | 10-5x=5x+90 | | 5x–6=19, | | 9x-3=1.5x-4 | | 7p+12=12p+12 |

Equations solver categories