20/(m+5)+35=7m

Simple and best practice solution for 20/(m+5)+35=7m equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20/(m+5)+35=7m equation:



20/(m+5)+35=7m
We move all terms to the left:
20/(m+5)+35-(7m)=0
Domain of the equation: (m+5)!=0
We move all terms containing m to the left, all other terms to the right
m!=-5
m∈R
We add all the numbers together, and all the variables
-7m+20/(m+5)+35=0
We multiply all the terms by the denominator
-7m*(m+5)+35*(m+5)+20=0
We multiply parentheses
-7m^2-35m+35m+175+20=0
We add all the numbers together, and all the variables
-7m^2+195=0
a = -7; b = 0; c = +195;
Δ = b2-4ac
Δ = 02-4·(-7)·195
Δ = 5460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5460}=\sqrt{4*1365}=\sqrt{4}*\sqrt{1365}=2\sqrt{1365}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1365}}{2*-7}=\frac{0-2\sqrt{1365}}{-14} =-\frac{2\sqrt{1365}}{-14} =-\frac{\sqrt{1365}}{-7} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1365}}{2*-7}=\frac{0+2\sqrt{1365}}{-14} =\frac{2\sqrt{1365}}{-14} =\frac{\sqrt{1365}}{-7} $

See similar equations:

| 5^4x-4=246 | | 3(4x+10)=21 | | 8x=242x | | 7x^2+3x=-4x^2-x^2 | | F-8=f+8 | | 12-7x=53 | | 3x/45=15/135 | | -7.6y=1.1y+K | | D=4-3x | | 24-4d=d | | (3n+5)/2=4+(4n+2)/4 | | (2.6p-1.8)=-4 | | 18-2(x+7)=8x-20-2/2 | | 6(p-1,5)=5(2p+1.8) | | 7p+79p-1=8p+6 | | z÷5=5 | | 2x+8x+12=120 | | y=5/8+10 | | (x/70)=(5/170 | | 15n+5=56n+64+3 | | 3x•4=18 | | 3n+5/2=4+4n+2/4 | | 4(2z+3)=10(z+1) | | 15x=25x+1 | | 8-5x=-3x-30 | | 7/11x=3/11x+K | | -5(r+9)=-73 | | 4(2z+3)=10(+1) | | 6(2x+4)+3x=39 | | 3x+7+5x+3=4x+20 | | 10+3h=60 | | 11x+39=4x+4 |

Equations solver categories