If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20/4x-4+1/4=5/x-1
We move all terms to the left:
20/4x-4+1/4-(5/x-1)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: x-1)!=0We get rid of parentheses
x∈R
20/4x-5/x+1-4+1/4=0
We calculate fractions
20x/64x^2+(-320x)/64x^2+x/64x^2+1-4=0
We add all the numbers together, and all the variables
20x/64x^2+(-320x)/64x^2+x/64x^2-3=0
We multiply all the terms by the denominator
20x+(-320x)+x-3*64x^2=0
We add all the numbers together, and all the variables
21x+(-320x)-3*64x^2=0
Wy multiply elements
-192x^2+21x+(-320x)=0
We get rid of parentheses
-192x^2+21x-320x=0
We add all the numbers together, and all the variables
-192x^2-299x=0
a = -192; b = -299; c = 0;
Δ = b2-4ac
Δ = -2992-4·(-192)·0
Δ = 89401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{89401}=299$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-299)-299}{2*-192}=\frac{0}{-384} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-299)+299}{2*-192}=\frac{598}{-384} =-1+107/192 $
| 5-h+7-3h=-3h+7 | | 8p=108 | | 35=0.35×w | | 7y+1+6(y+1)=7y+6 | | 5x=7x+38 | | 2.6d-4.1=1.2(4d+3) | | -4-6v=8(8-5v) | | 12r=10 | | 2(3x-4)-x=5x+8 | | 9x+24+7x-10=180 | | 3x+4=3+5 | | 9r2−5=607 | | 0y+9=-7 | | 9r^2−5=607 | | -0.6+x=17 | | (3x×7=) | | -9/5=2/3w-1/2 | | -122-11x=109-4x | | x=500-20P | | 2x+30+4x+9=180 | | 4x-184=14x+96 | | A=16.F(2a) | | 0-y+4=0 | | -7/5+4/3v=-1/2 | | 5/6(k-6)=-2 | | 21b^2+40b+16=0 | | -6-y+4=0 | | X+4+6x-12=180 | | 3j+2=-2j-1+4j | | -16+4=-2(x+2) | | -12-y+4=0 | | 5/18+x/9=3 |