200+11/2x=54812/5x

Simple and best practice solution for 200+11/2x=54812/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 200+11/2x=54812/5x equation:



200+11/2x=54812/5x
We move all terms to the left:
200+11/2x-(54812/5x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
11/2x-(+54812/5x)+200=0
We get rid of parentheses
11/2x-54812/5x+200=0
We calculate fractions
55x/10x^2+(-109624x)/10x^2+200=0
We multiply all the terms by the denominator
55x+(-109624x)+200*10x^2=0
Wy multiply elements
2000x^2+55x+(-109624x)=0
We get rid of parentheses
2000x^2+55x-109624x=0
We add all the numbers together, and all the variables
2000x^2-109569x=0
a = 2000; b = -109569; c = 0;
Δ = b2-4ac
Δ = -1095692-4·2000·0
Δ = 12005365761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{12005365761}=109569$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-109569)-109569}{2*2000}=\frac{0}{4000} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-109569)+109569}{2*2000}=\frac{219138}{4000} =54+1569/2000 $

See similar equations:

| 90=x-6+5x | | 11.03=8.78+0.02e | | 0.5y-3+48+y=180 | | -6x+1=5(x+9) | | x^2-10=7x+8 | | 9=5u=6u-7-8u=4 | | 2=4t–14 | | -x-26=3x+6 | | x5+8=-2 | | -3=-8+u/4 | | 3x+3+2x+7=180 | | 1=-d/2-1 | | c*2+15+c=57 | | 6b=738 | | -4=-1-x/8 | | -11p-13p+10=-14 | | 15-2-3kk=2 | | 4x+3+17x+9+4x+3+17x+9=360 | | p+7=p+9 | | 8v=808 | | 2=4t–14 | | (d−78)/2=8 | | 1/5h÷20h+2/3h=h | | 3(a+4.51)=-3.57 | | 7(z-3)=-7 | | 4n-3=4n+15 | | d−782=8 | | 4x+3+17x+9=180 | | 2x+8=6x+39 | | y-y+2y-y=11 | | d−78/2=8 | | 4x-26=X+1 |

Equations solver categories