200+3/2x=548-7/5x

Simple and best practice solution for 200+3/2x=548-7/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 200+3/2x=548-7/5x equation:



200+3/2x=548-7/5x
We move all terms to the left:
200+3/2x-(548-7/5x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3/2x-(-7/5x+548)+200=0
We get rid of parentheses
3/2x+7/5x-548+200=0
We calculate fractions
15x/10x^2+14x/10x^2-548+200=0
We add all the numbers together, and all the variables
15x/10x^2+14x/10x^2-348=0
We multiply all the terms by the denominator
15x+14x-348*10x^2=0
We add all the numbers together, and all the variables
29x-348*10x^2=0
Wy multiply elements
-3480x^2+29x=0
a = -3480; b = 29; c = 0;
Δ = b2-4ac
Δ = 292-4·(-3480)·0
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{841}=29$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-29}{2*-3480}=\frac{-58}{-6960} =1/120 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+29}{2*-3480}=\frac{0}{-6960} =0 $

See similar equations:

| -14v=182 | | 14+3(-5y-4)=8y | | 11=1/2z-5 | | -4.9t^2+14.7=0 | | x+0.5=3x+1.5=3x-2 | | 25x+3=252 | | 5-(x-6)=-7+3(-x=2) | | 6m+3(-4m-1)=-11-7m | | 1/22x=3 | | 0.47(x+20)=2+0.5(x-2) | | 4.9t^2+14.7=0 | | -10g+5=-11g | | 3x=2x+20=4x-20 | | 35x^2=31x+40 | | 2.5x-20=6.5x+4 | | v/3-4=29 | | 23+z=45 | | 5-(x-6)=-7 | | 12x-20=10x2 | | 200+1/12x=548-12/5x | | 5(3y-1)-3(2y)=26 | | -(18+6k)=6(1+3k) | | 2/5x+6=5 | | 5x+4+-8x-3=79 | | -2(c+11)=10 | | 12x-20=5x*2 | | -5(7-2x)=15 | | 6/11=18/x | | 5(b+1)+9=7b+7 | | 2x-4=8+x/2x= | | 8x-5=25-2 | | -w+4w—6=-6 |

Equations solver categories