If it's not what You are looking for type in the equation solver your own equation and let us solve it.
200=16t^2
We move all terms to the left:
200-(16t^2)=0
a = -16; b = 0; c = +200;
Δ = b2-4ac
Δ = 02-4·(-16)·200
Δ = 12800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12800}=\sqrt{6400*2}=\sqrt{6400}*\sqrt{2}=80\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{2}}{2*-16}=\frac{0-80\sqrt{2}}{-32} =-\frac{80\sqrt{2}}{-32} =-\frac{5\sqrt{2}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{2}}{2*-16}=\frac{0+80\sqrt{2}}{-32} =\frac{80\sqrt{2}}{-32} =\frac{5\sqrt{2}}{-2} $
| 4(8x-8)=44 | | 3x-40=26 | | 4/5x-7=1/2x+9 | | 0.5(x4−5)+17= | | 15=2h^2+-3 | | 30x+25=75+25x | | 2(x+3)=5x+27 | | 15=2h+-3 | | 1/2x-3=3/4x+5/8 | | 13=31/4x | | 9=3(k-5) | | 7y+2=4y-13 | | 3x20=60 | | 0.75x24=18 | | 200(60)+5x=10(60+x) | | 4x-75=-56 | | -x+20(4/5)=10 | | b/9+31=39 | | 3(x−4)=x+8 | | 1/2x-15=1/2(x-15) | | 27=12-5t | | 3x-15=-42 | | 2(z+3)=8 | | 5g-12=48 | | 6+6u=48 | | 10^(1-x)=6x | | 43x+50=0 | | 4(x-3)=44/11 | | 3x-5(x-5)=3+2x+4 | | h/8-10=-6 | | 6.1x=-12.81 | | 3x-5x+25=7+2x |