If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2025=x(x+40)
We move all terms to the left:
2025-(x(x+40))=0
We calculate terms in parentheses: -(x(x+40)), so:We get rid of parentheses
x(x+40)
We multiply parentheses
x^2+40x
Back to the equation:
-(x^2+40x)
-x^2-40x+2025=0
We add all the numbers together, and all the variables
-1x^2-40x+2025=0
a = -1; b = -40; c = +2025;
Δ = b2-4ac
Δ = -402-4·(-1)·2025
Δ = 9700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9700}=\sqrt{100*97}=\sqrt{100}*\sqrt{97}=10\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-10\sqrt{97}}{2*-1}=\frac{40-10\sqrt{97}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+10\sqrt{97}}{2*-1}=\frac{40+10\sqrt{97}}{-2} $
| 5x+1=1-5x=9+7x-6 | | 0.5(x+12)=10 | | -2x+5+8x=-1+6x | | x-1/2–2–x/3=8 | | –7−8x=15+3x | | 3x+4x+5x=x2+x+2+x+2+x+2 | | -6-11r=137 | | Y=22.5x(450)+290 | | 5w—5w—19=9 | | x+3.2=1.8 | | 10y-35=-25 | | 13g=36 | | 112(t)=-16t^2+128t | | 7=m-10 | | -3r-15=-45 | | 7/(x-1)+4/x=9/x | | Y=290x+250 | | Y=240x+250 | | P(x)=8x-21 | | .2x+5=-x+(-1) | | Y=450x+22.5+290 | | 3^5x-4=18 | | y-3=4= | | 14x=73.5x | | 8^5=2^2m^+^3 | | 5(2q+5)+1=7q+10 | | (9n²-3)(n=3) | | x-239=450 | | 9n²-3n=3 | | 9c=10.98 | | y=2-92/3 | | -2(4x+4)-3x-2=43 |