20=2(z2+5)

Simple and best practice solution for 20=2(z2+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20=2(z2+5) equation:



20=2(z2+5)
We move all terms to the left:
20-(2(z2+5))=0
We add all the numbers together, and all the variables
-(2(+z^2+5))+20=0
We calculate terms in parentheses: -(2(+z^2+5)), so:
2(+z^2+5)
We multiply parentheses
2z^2+10
Back to the equation:
-(2z^2+10)
We get rid of parentheses
-2z^2-10+20=0
We add all the numbers together, and all the variables
-2z^2+10=0
a = -2; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-2)·10
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-2}=\frac{0-4\sqrt{5}}{-4} =-\frac{4\sqrt{5}}{-4} =-\frac{\sqrt{5}}{-1} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-2}=\frac{0+4\sqrt{5}}{-4} =\frac{4\sqrt{5}}{-4} =\frac{\sqrt{5}}{-1} $

See similar equations:

| (2*x)+12=40 | | 4.33g=-1.3 | | 3(4x+9)=21x+8-9x+19 | | 6.5(d-2)=-2.5(3d+3)-6.5 | | 3x-42.15=3.45 | | 3x+17-12x=-x+9 | | -701=b+-984 | | C=38.28+.50x | | y8+88=93 | | 926=v+258 | | 4/5b+9=-15 | | 47x+59=47x+24 | | 4+14c+6=-6c-30 | | 64=-3x+4(3x-2) | | 6.5(d-2)=-2.5(3d+3)6.5 | | -16=g-4 | | 2(5)+6+4=4x | | P=(12n+150)-(4.25n+250)= | | x2+47=23 | | 4x-5+x=4(3x+1) | | -10=n-9 | | 7x-19=1x+5 | | 6.5(d-2)=-2.5(3d+)6.5 | | 5n+4+2n=32 | | v+66=15 | | 1−4x−4x=−15 | | -5p+2p+8p+2-8=0 | | -2x+6=14-6x | | 2x+6+4=4(5) | | 23=-5x-2 | | 4h+7=51 | | 61=q+-14 |

Equations solver categories