If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=7/2(2)+x(2)
We move all terms to the left:
20-(7/2(2)+x(2))=0
Domain of the equation: 22+x2)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
x2)!=-22
x!=-22/1
x!=-22
x∈R
-(+x^2+7/22)+20=0
We get rid of parentheses
-x^2+20-7/22=0
We multiply all the terms by the denominator
-x^2*22-7+20*22=0
We add all the numbers together, and all the variables
-x^2*22+433=0
Wy multiply elements
-22x^2+433=0
a = -22; b = 0; c = +433;
Δ = b2-4ac
Δ = 02-4·(-22)·433
Δ = 38104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{38104}=\sqrt{4*9526}=\sqrt{4}*\sqrt{9526}=2\sqrt{9526}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{9526}}{2*-22}=\frac{0-2\sqrt{9526}}{-44} =-\frac{2\sqrt{9526}}{-44} =-\frac{\sqrt{9526}}{-22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{9526}}{2*-22}=\frac{0+2\sqrt{9526}}{-44} =\frac{2\sqrt{9526}}{-44} =\frac{\sqrt{9526}}{-22} $
| x2-20x-44=0 | | -3/8(-8-16x)+2x=24. | | .80x+8=29+.20x | | 20=7/2+x | | j-42=30 | | 12.5x−10.2=7.5x+12.6−6 | | 7u−5u+4=14 | | 9(x-7)=3x+66+3x+75 | | 24^2+b^2=45^2 | | (n+8)/5=(n-1)2 | | 1.2y=9.6 | | 9(x+4)(x-4)(3x+4)(x-1)=0 | | (x+2)/6=(2x-100)/8 | | (7t−2)−(−3t+1)=−3(1−3t) | | 17.5-6v=8(7.5v+3) | | 3+1=7x+-24 | | 6x+–19x=–13 | | 5x-8+5x+25=180 | | g/3+2=2 | | B+5.8=a | | 9x-4=-85x= | | 3y/4.6=12 | | u+30=91 | | 4x-2x+2=3x+10 | | 180=8w+12 | | (3x-29)=(6x-7) | | 4m-17=31 | | 1=9x3 | | (q-10)×2=12 | | 4x1/6=2/3 | | -1.5(4-x)=-10 | | -1.5(4-r)=-10 |