If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20n^2+2n-35=0
a = 20; b = 2; c = -35;
Δ = b2-4ac
Δ = 22-4·20·(-35)
Δ = 2804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2804}=\sqrt{4*701}=\sqrt{4}*\sqrt{701}=2\sqrt{701}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{701}}{2*20}=\frac{-2-2\sqrt{701}}{40} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{701}}{2*20}=\frac{-2+2\sqrt{701}}{40} $
| f(6)=6^2-6*6+8 | | 3m(6+2)=3(3m-1) | | 3a+7=17+5a | | 6+m=24-9 | | 8+15x=24 | | 4(2x+3=26+x | | 6m=24-9 | | 3x+4x-6+8-3=0 | | 4x+2x=x+x+x+20 | | 4x+2x=x+x=x+20 | | 3x+(x-5)=36 | | -1.2=8.8-5y | | 4x+2x=x+x=+20 | | 3x+(x+0.5)=5.30 | | 2x+3(x-7)=2(x-6) | | 7x-23=5(x-1) | | -14x-19=31 | | 9x+4=x+0 | | 7x+6=1x+4 | | 1/13=3/c | | 2(2x+3)=9x | | 2x-14=12.6 | | 5(1-2(x+2))=4 | | 3d+2+D+5+3D+2+D+5=30 | | 2(3x-10)2x=100 | | -88-12x=68 | | 54-12x=-54 | | 115+x/18=120 | | 26+4x=94 | | 10x-15=6x+15 | | -6x-13=47 | | 91=-12x-29 |