If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20q^2+19q+7=4
We move all terms to the left:
20q^2+19q+7-(4)=0
We add all the numbers together, and all the variables
20q^2+19q+3=0
a = 20; b = 19; c = +3;
Δ = b2-4ac
Δ = 192-4·20·3
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-11}{2*20}=\frac{-30}{40} =-3/4 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+11}{2*20}=\frac{-8}{40} =-1/5 $
| 7(x+2)-(6x-5)=-2 | | M/4=m/7+7 | | x+1/x-1=3x/3x+6 | | 2.25(9x-4)=-2+10x+12 | | 40-4x=-2(-3x+10) | | -3=(4x^2)−x−3 | | -3=4x^2−x−3 | | 15(x+)-7(x+9)=4x | | 5/6=y+6 | | 6-(4n-6)=3-5n | | x+5÷4=12 | | 12-1/5t=2t+1 | | 9000=25000-1600t | | 3x-7+2x-3=50 | | y=-1.4+7 | | 706.19=3.14r2=82.79 | | C(t)=50+7t+5t+0.07t | | y/2-12+y=90 | | 706.19=3.14r2r= | | 0.15x^2+0.95x+1=0 | | (2-x)/3=30 | | (3m-1)(18m^2-32)=0 | | 8+7b=40 | | 9.12/xx=-0.2 | | 8=5−3p | | (x-5)*2=22-6x | | 13=-7x+2(x+4) | | 3(4+w)=2(6+w) | | 19=6k-17 | | x-7.2=-4.3 | | (3•6/2)v+10=3*2v+9 | | r-5/2=5 |