If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+10x-8=0
a = 20; b = 10; c = -8;
Δ = b2-4ac
Δ = 102-4·20·(-8)
Δ = 740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{740}=\sqrt{4*185}=\sqrt{4}*\sqrt{185}=2\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{185}}{2*20}=\frac{-10-2\sqrt{185}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{185}}{2*20}=\frac{-10+2\sqrt{185}}{40} $
| 8,-15=5m+21 | | 9x+36000-4x=43600 | | E^-0.3x=5 | | 12=15-4m | | 10x+4x=-8+x | | x*(x+1)*(x+2)=720 | | 4x-9=6- | | 2x^2-7.9x+4=0 | | 16x-35=7-8 | | -5x–12=2 | | 2x^2-5.9x+2=0 | | x+1/7=4 | | 2x^2-5.9x+3=0 | | 2x^2-6.1x+3=0 | | (x÷2)-(1÷5)=(x÷3+(1÷4) | | 2x+1=(7x+21)+2x | | 5/8=u/7 | | z+7/14=1-3/7 | | 30x-(-15)=7x+10 | | 30x-(-15)=5x+10+2x | | 32x-(-16)=4x+12+2x | | (x-6)(x-13)=0 | | 26x-16=12 | | 33k+90-9=180 | | 5(x+8)+4=-6(x-1)-3 | | 2x(5)=30 | | 2xx5=30 | | 3(2x+12)=18 | | X/100x150.92/1+100-x/100x152.921/1=151.96 | | 2^x-1+2^x+1=320 | | 11x+7=10(x+4)-5 | | x=23=3+4x |