If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+16x=0
a = 20; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·20·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*20}=\frac{-32}{40} =-4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*20}=\frac{0}{40} =0 $
| (X+1)(x-2)=x2+6 | | 7f+23=86 | | -7k-9)=-21 | | -12x+6=-30 | | 7.2−y=6 | | -8(x-11)=2x-34 | | Y^2+12y-400=0 | | x+11/6=3 | | 37/5=7r | | 2b+8=2(b+4) | | 41-2x=28 | | 23+v/7=5 | | 7x+1=-92 | | 1-2b−13=12−4b−2b | | 6(c-82)=48 | | 4x+3x-9+18=24 | | 7y+11=4y-4 | | 4m-52=40 | | 50=14(3x) | | 3w-27=21 | | 2/3=m/1 | | 7b-14=-35 | | 7+-5y=92 | | a+75=189 | | 24-2s=20 | | 13+f=43 | | E(1-3c)=2(-4c+7) | | 500=0.12x | | (5x-3)/2=21 | | X=-16+5(9y) | | 3(a-1)=2a+9 | | 3(s+12)=93 |