If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+16x=0.
a = 20; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·20·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*20}=\frac{-32}{40} =-4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*20}=\frac{0}{40} =0 $
| 3.5=3(4+5r) | | 25+8x+91=180 | | 5(n=6)=2(n-3)+4 | | 2x+6=6x+-4 | | 3×(5-x)+(x+2)2=-6x+7 | | (5x+3)-4x-4)=9 | | -45+y/7=5 | | u−6=−3 | | 34x−12=84 | | 4n+5n=-3 | | (5x+6)=(10x+10) | | 1−4a=21 | | 3+(1/4)a=37 | | 3x^2-2x/2x-6=0 | | y/9+2=-14. | | x-6.125=x | | -4.2x+31.6=-65.1 | | 3x-8+16+3x-8+16=32.2 | | 6x+69=51 | | 22a-1=0 | | 6x+51=69 | | 11=2(3.14)(r) | | -14.5=2t-3.5 | | 3(3v+4)=29 | | -5=y-7/9=-11 | | (2x+5)(4x+7)=0 | | 15x-4=27 | | 2x-1x3=5x3 | | 18=14(x-12)+4(4-12x) | | 180=-9(b-8) | | 5x+121=-2x+101 | | -1554=14(1-8n) |