If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+44x=0
a = 20; b = 44; c = 0;
Δ = b2-4ac
Δ = 442-4·20·0
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-44}{2*20}=\frac{-88}{40} =-2+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+44}{2*20}=\frac{0}{40} =0 $
| -24x+-40x=24 | | x-3/2-2=x-2/3 | | 6+a=-7 | | (-4a+11)=(a-16) | | 6(1-3x)+4x=34 | | 21=-9+0.7x | | 2(5x-3)+4=3x+4 | | -5+11x=4(-3x+-2) | | 5x4=17+ | | -10c+-4c+-9=5 | | y=10-1/4y | | 8x/3-2=62 | | 220.5=7•7•w | | -10+x+4=7x-12 | | 28=-5x-x+12x | | 4(1/4-1/2b)+2b+3=4 | | 3p-1.2=-7p-16.8 | | x²+6x+84=0 | | (4x+2)=57 | | 12x-7=5x+2 | | 5x+10(x+6)+25(x+15)=915 | | 2x^2=8√2^2 | | (D⁴+2D³+3D²)y=0 | | x(16)-3.1=9.4 | | 2=-16t^2+24t+4 | | -14+h=30 | | 72+y=182 | | 72+y=183 | | x^4+4x^2+30=0/ | | 15x+12x=5 | | -55+f=60 | | 2x+10=117 |