If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+6x-15=0
a = 20; b = 6; c = -15;
Δ = b2-4ac
Δ = 62-4·20·(-15)
Δ = 1236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1236}=\sqrt{4*309}=\sqrt{4}*\sqrt{309}=2\sqrt{309}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{309}}{2*20}=\frac{-6-2\sqrt{309}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{309}}{2*20}=\frac{-6+2\sqrt{309}}{40} $
| 113.04=(3.14)r(r) | | 20x2-6x+15=0 | | 15x2+11x+8=0 | | 15x2-11x-8=0 | | 8x2-7x-18=0 | | 19x2-12x-8=0 | | 9x2-18x-3=0 | | x+74+x+8+x+67+x+27=360 | | x+47+93+x+58=360 | | 5(3x-2x)=7x+4 | | (4d^4-15d^2+5d+6)y=0 | | 7-5x=10x+2 | | 3y+12=32 | | 2x-4=10x+7 | | 5x+3(x+4)=36+4x | | 96/k=3k= | | 3x+(3-2)=10 | | 9x-3=123x= | | 15+bb=6 | | 18z=-18+20z | | 6-2(c-3=12 | | -17k-10=18-13k | | -3g=-5g+4 | | -3g=5g+4 | | 2x2-20+46=0 | | 2x^2-20+46=0 | | 1/6(3/2j-4)+j=2/3j | | -5+9g=8g | | 5k=8k-6 | | 25/a=-5 | | -54/a=-9 | | 185/a=-37 |