If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+9x+1=0
a = 20; b = 9; c = +1;
Δ = b2-4ac
Δ = 92-4·20·1
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-1}{2*20}=\frac{-10}{40} =-1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+1}{2*20}=\frac{-8}{40} =-1/5 $
| 6s+12=3(2s=8) | | -8x-64=31-13x | | F(5)=7x+2 | | y-98=444 | | 8(x-3)=-(5x-11) | | 7.49x10^-28=3.98x | | -50+3x+x=-11 | | -x=x-24 | | 11x-2(3x+5)=3(x+4) | | 1y+1y=−4y+8 | | y-33.9=25.4 | | -6x-9=-3(x-12) | | Z13.1-0.7z=8.2 | | X+5(2-x)-3=15 | | 3.45x=1.56x10^24 | | -6(x+8)=2(4x-10) | | 3(4+2x)+x=26 | | 17=x10 | | 8y+1=7y-3 | | (2y-3)1/4+1=4 | | 10=5/7v | | 5(x+-8)+26=-9 | | X-3+3x=25 | | 15=8x^-14x | | 275=y-12 | | −3x−31=5x−7 | | 1.2=8.6x | | 111/4m=112/3 | | b+32=55 | | -2x+5(x-1)=-2 | | z+4/12=7 | | 2y-y=5-4 |