If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-108x+144=0
a = 20; b = -108; c = +144;
Δ = b2-4ac
Δ = -1082-4·20·144
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-108)-12}{2*20}=\frac{96}{40} =2+2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-108)+12}{2*20}=\frac{120}{40} =3 $
| 2(y+8)=-8y-4 | | 12-9=4x+5 | | 32.663=x+11.636 | | 2x+2+x+13=180 | | Y+7=y-7 | | 8=0.1x-0.3x-2 | | x+23+x-18=180 | | 12-9=4x=5 | | 25y2-50y+72=0 | | 28-4u=3u | | -14=m+7 | | ∠A=5x−15∘ | | 6x(x-4)+64=-2x | | 4(7x-3)-6=-4(3x-7) | | 7y=7+48 | | ∠A=5x−15∠B=2x+21∘ | | -x+33=3x+5 | | b+5=20 | | 6x^2+6=7x+9 | | 15x-15(x-4)=500 | | 13(-6)-6y=30 | | 5x-24=x+12 | | 15x-4=-x+12 | | (7x+49)=(11x+5) | | 17=3(z-11)+5 | | 7x^2-12x-5x^2+20x=0 | | 15x+15(x-4)=500 | | 2m+11.34=20 | | 15x-4=-x+13 | | 2z/7-6=-3 | | 7x^2-12x-5=x^2+20x | | 8s=10s+6 |