If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-13x-16=0
a = 20; b = -13; c = -16;
Δ = b2-4ac
Δ = -132-4·20·(-16)
Δ = 1449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1449}=\sqrt{9*161}=\sqrt{9}*\sqrt{161}=3\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-3\sqrt{161}}{2*20}=\frac{13-3\sqrt{161}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+3\sqrt{161}}{2*20}=\frac{13+3\sqrt{161}}{40} $
| 15x2+6x-20=0 | | 6x2+8x-15=0 | | 11x2+4x-7=0 | | 7x2-x-19=0 | | 20x2+15x+12=0 | | 17x2-2x-12=0 | | 7x2-20x-15=0 | | 14x2+14x-7=0 | | 4x2+2x+11=0 | | 18x2+16x-11=0 | | 17x2-11x-7=0 | | 19x2+7x+16=0 | | 11x2-15x-10=0 | | 18x2-11x-20=0 | | 11x2-4x-3=0 | | 19x2+10x-18=0 | | 15x2+2x-10=0 | | 6x2+2x+19=0 | | 18x2+12x-6=0 | | 16x2+16x+16=0 | | 15x2+3x-3=0 | | 12x2+18x+5=0 | | 11x2-10x-4=0 | | x2-19x-11=0 | | 4x2+18x+4=0 | | 3x2+10x-9=0 | | 19x2-16x-5=0 | | 10x2-13x-13=0 | | 4x2+13x-10=0 | | 8p+13p-4p=153 | | 8.7=4u-4.1 | | 73+9x+8=90 |