If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-15x-10=0
a = 20; b = -15; c = -10;
Δ = b2-4ac
Δ = -152-4·20·(-10)
Δ = 1025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1025}=\sqrt{25*41}=\sqrt{25}*\sqrt{41}=5\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-5\sqrt{41}}{2*20}=\frac{15-5\sqrt{41}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+5\sqrt{41}}{2*20}=\frac{15+5\sqrt{41}}{40} $
| 23+22=5c | | x=3+9/14 | | x/48=13/52 | | 10(x-2)+5=55 | | (14x+4)=55 | | 3(1.82)-9y=12 | | S+2=6x-4x+8 | | -5t+-15;t=1 | | 5k=-9+-36 | | 7n+3=7n+11 | | (10x-27)+(2x+29)=180 | | –2t+–6=–20 | | 4(8n)-2n=34 | | (10x-27)(2x+29)=180 | | 4.4g+5=1.4g+17 | | n8+12=64 | | X^-3=2x+6 | | 30(2x)+35(x)+35(x+3)=1275 | | 1/3y=5/64 | | 50-(c-0.05c)=c | | 14/7=x/21 | | -7+19=3v | | $�=12–4x | | 48=3k+12 | | 6x−8=−3x+10 | | 3x2+4x+2=9 | | (b-7)/5=(b+3)/4 | | 3(x+2)-4=2(x-1)+1 | | (4x+30)+(2x+27)=180 | | .15x+x=115000 | | (3x-20)=(2x-6) | | x-6-2=5 |