If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-39x-80=0
a = 20; b = -39; c = -80;
Δ = b2-4ac
Δ = -392-4·20·(-80)
Δ = 7921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7921}=89$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-89}{2*20}=\frac{-50}{40} =-1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+89}{2*20}=\frac{128}{40} =3+1/5 $
| -1/5xx=-4 | | 4(x-8)=10=-10 | | 4(3n+1)=9(6n+3)+1 | | 1/6(3t-5)=t+5/12 | | X^2-8x^2+24=0 | | 4*z+1/6=5z+7/6 | | 4+-c=14 | | 3(x+7)^2-(432)=0 | | 5v+2=-2v+9=7 | | 5n+34=-2=14 | | 4(4x+1)=3x-4(6-x)=8 | | 4x+9x-8x=19+1 | | (3x+10)-5x=6x+50 | | 6(x-2)/3=2(x+8)/11 | | 7x3/4=72 | | 7x=30-3x=40 | | (3x)^2+(2x)^2=√117^2 | | 256x^2+81x^2=189 | | 3z²+2z-4=0 | | 12.35+0.08(x+3)=12.85-0.07 | | 3x-5=2.9 | | 18(x-1)=120 | | 8x+77=101 | | Q=1x+4 | | 2(x-5)+6=2(2x+2) | | -4=-14+2p | | x+10(x+2)^0.5-22=0 | | N=0.08r+7,400 | | 10x-24=8x+2 | | -5x+9=-4x+7 | | 256x^2+81x^2=30.25 | | 12.35+0.05(x+3)=12.85-0.07 |