If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-4x-8=0
a = 20; b = -4; c = -8;
Δ = b2-4ac
Δ = -42-4·20·(-8)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{41}}{2*20}=\frac{4-4\sqrt{41}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{41}}{2*20}=\frac{4+4\sqrt{41}}{40} $
| 10n+3(8+8)=-6(n-4) | | 9-3(2x-1)=30 | | (6x-15)x=96 | | (3x-5)-2x=180 | | 6x-15(x)=96 | | (3x-5)-2x=90 | | (3x-5)+2x=84 | | (3x-5)2x=84 | | (3x-5)2x=74 | | 1=a+9/26 | | 2x+80+6x=180 | | 2x+80+6x=90 | | 10+10=5d | | 4x(x+20x)=0 | | -7=1+6d | | 6v+18=56 | | 42w=52 | | f+165=954 | | 6(6v+)-5=1+6v | | 7(4x+5)-10=193 | | 13x=-299 | | 16+5n=41 | | 8+1/4x=19 | | -20.8=0.8a | | 15/9=n/3 | | 36=3(4x-12) | | 2(-6-3x)=90 | | 3(x^2-3)=66 | | 2(2y+12)=60 | | x^2-2x+I=0 | | x*0.8*5=1019-(3+5*4) | | x*0.8*5-(3+5*4)=1019 |