If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-4x=0
a = 20; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·20·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*20}=\frac{0}{40} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*20}=\frac{8}{40} =1/5 $
| 7(r-8)=-35 | | x+6-1=1 | | 9(-x-7)+5=-13 | | 9x=7,18= | | -3.6=z+15.1 | | s5=9 | | 9x-5=8(x+2) | | 8x=4(x-5) | | Z(7y-5)=4 | | |9+8x|=31 | | 10(r-1)=30 | | x-8=x+-8 | | 7+3x=-x+1 | | 3x2+3=195 | | -4+7x=14x-53 | | -52+58x2=0 | | X^2-7.5x=1.5 | | 3x-(2x+4)=10-5 | | 2x-13=41+8x | | 1+5k-2=4 | | 6(c−4)+4=4(c+6)+2c−44 | | –12m=4(–8m+20) | | -6x+24=-6 | | 5x2-3=8x+3 | | 10x+25+3x+7=110 | | 5-10x=2-9x | | 3(b−9)=15 | | 5(x2-3)=8x+3 | | 29+11x=3x+13 | | -255=15x | | 7/2=x/42 | | x-9x=23(5,2) |