If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-51x+28=0
a = 20; b = -51; c = +28;
Δ = b2-4ac
Δ = -512-4·20·28
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-51)-19}{2*20}=\frac{32}{40} =4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-51)+19}{2*20}=\frac{70}{40} =1+3/4 $
| 4x3-14x^2-30x=0 | | -10x-8=82 | | 2x+37+37=180 | | 8w=4+6w | | 4f(7f–8)=0 | | x2=3+2x | | 2x+x+37=180 | | 8-0.25x=5.75 | | 6z-15=67 | | n/2-9=-31 | | -5x+8=-57 | | n÷5+6=14 | | 2x2+14x=5x+18 | | 40=5u/8 | | I.75x-3=1.125 | | 12w-8w=24 | | -4(2x+2)=3(x+1) | | 2x2+9x=4x+42 | | 43(7-n)=12 | | 2x2+14x=7x+4 | | 3(7+2x)+3=3(5+x)-9(x-1) | | 3(7+2x)+3=3(5+x)-9(x-1 | | 2m^2+9m-56=0 | | 2x2+11x=2x+35 | | -2x-20=4 | | 34r+500=554 | | 2(y-7)-7y=-9 | | 7z-16=2 | | 8(v-1)-4=4(v-3) | | 15w^2+17w-2=0 | | 15w^2-7w-4=0 | | 15w^2-17w-2=0 |