If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2=35
We move all terms to the left:
20x^2-(35)=0
a = 20; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·20·(-35)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{7}}{2*20}=\frac{0-20\sqrt{7}}{40} =-\frac{20\sqrt{7}}{40} =-\frac{\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{7}}{2*20}=\frac{0+20\sqrt{7}}{40} =\frac{20\sqrt{7}}{40} =\frac{\sqrt{7}}{2} $
| 18z-14z-z-2z=3 | | 3(x-4)=4-5x/3 | | 6c+65+7c+60=180 | | -12=2/3y | | 8p+2=4p-10* | | −5n−8(1+7n)=−8. | | –5+5s=5s−5 | | 4x+12=2x+23 | | 2x-4(x=1)=96 | | 2r+39=90 | | 8r-19=90 | | x+56=92 | | 2m×12=22 | | 4x-3=-5x+21 | | -9=r/3+(-12) | | 8r-19+2r+39=90 | | 4/3x^2=2/3x^2+6 | | -2.3x+4.2x=15.01 | | 6(d-4)+12=3d-18 | | 52+6=x+28 | | (7x+5)+33=180 | | x+65=83 | | Y=2|x| | | 8r-19=2r+39 | | r+13/12=12 | | n2+10n+7=0 | | 34=6+3(x+2) | | y(y+4)=-3.75 | | 3h+25=43 | | x/4+2=x/8-3/4 | | -10a^2-28a+64=0 | | -29=3(9x-7) |