If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x=(8x-4)(5x+5)
We move all terms to the left:
20x-((8x-4)(5x+5))=0
We multiply parentheses ..
-((+40x^2+40x-20x-20))+20x=0
We calculate terms in parentheses: -((+40x^2+40x-20x-20)), so:We add all the numbers together, and all the variables
(+40x^2+40x-20x-20)
We get rid of parentheses
40x^2+40x-20x-20
We add all the numbers together, and all the variables
40x^2+20x-20
Back to the equation:
-(40x^2+20x-20)
20x-(40x^2+20x-20)=0
We get rid of parentheses
-40x^2+20x-20x+20=0
We add all the numbers together, and all the variables
-40x^2+20=0
a = -40; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-40)·20
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*-40}=\frac{0-40\sqrt{2}}{-80} =-\frac{40\sqrt{2}}{-80} =-\frac{\sqrt{2}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*-40}=\frac{0+40\sqrt{2}}{-80} =\frac{40\sqrt{2}}{-80} =\frac{\sqrt{2}}{-2} $
| 4q^2+3q=3q^2-3q+16 | | x+46=x+23 | | -4+m/1=0 | | 25x2–30x=-9. | | 3.24x+8.27x-8.09=7.83 | | -7(9a-6)=-28-4a | | 9v-3+6v=27 | | 4x/5+4=6x-3 | | P^2+10p-4=10 | | x2+6x+4=0. | | x2-10=4x+11 | | 14.4=-22.4b | | 4x/4+4=6x-3 | | 5/6(30x+18)=25x+9 | | 3/4y-7=-5/2y-5/2 | | x−16=47 | | 15-(3z+1)=4(z+1)+3z | | -2m+14=2 | | 3x+14=5(x-2) | | 3(13x+19)-6(4x-5)=32 | | 3/4y-7=-5/2y-5/3 | | 5^x+12^x-(13^x)=0 | | 5^x+12^x=13^x | | -18+8x=7x+7 | | 3y2-9y+3=0 | | -27=5h-4h | | 2(x-7)^3-54=0 | | 4x2+6=54 | | 3x-76=54-7x | | -5k+3-9=-24 | | 8q2+8q+2=0 | | 40-v=257 |