If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20y+100y^2=0
a = 100; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·100·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*100}=\frac{-40}{200} =-1/5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*100}=\frac{0}{200} =0 $
| 12a2+36a=0 | | 11d2-33d=0 | | 2x-4=3(2x) | | 54n2+36n=0 | | 5x+10=2x+41 | | 3/4x-1/3=3x+1/2 | | 2^9a-2=63 | | 27u2-15u=0 | | 5/7=y/11 | | -11×-7y=56 | | 6t+30t2=0 | | 15–2x=75 | | 31=10j-9 | | 2y-6=6× | | W=98w+115(15-w) | | 8=17-3h | | 5x2-30x=0 | | 49=3s+16 | | 1=4-3h | | 13w+39w2=0 | | 0=8x-70 | | 9=19-5v | | 5y^2+6=-86 | | 7=5r-13 | | 0.8x-1.4=-9.4 | | 8k+72k2=0 | | ((1)/(2))^(7x+1)=-9 | | 1/4x+14=34 | | A(x)=x(300-2x) | | 9f2-27f=0 | | 6=8-2h | | 9÷7x=51 |