If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20y^2-31y+12=0
a = 20; b = -31; c = +12;
Δ = b2-4ac
Δ = -312-4·20·12
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-1}{2*20}=\frac{30}{40} =3/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+1}{2*20}=\frac{32}{40} =4/5 $
| 36c-12=45c+45 | | W2+6w-11=0 | | (3x^2)-4x=0 | | -2(5t-5)+5t=6t-9 | | W3+6w-11=0 | | x=8-20-3 | | (4x-1)=x+36 | | x=8-20+3 | | 88x-11x^2=0 | | x²+16x+64=0 | | 3/5*x=40 | | 18-4x=7+7x | | 2*(x–3)–7=18–5*(x+4) | | 2x+3-7x=18-5x-20 | | 3g^2+32g-256=0 | | 7x−8=−71 | | 3(1x+1)=27 | | 5(2x+10=170 | | 5(3x+4)=170 | | -2x+7=13x+15 | | 8-5r=-2r | | 12-2(a-1)=8+9 | | 413x+59+292x=122x-249 | | 2(7x+6)=96 | | x^2-6x+9/4=0 | | 5(5+6x)=115 | | 7-2+x=11 | | 2(3x+10)=92 | | 4+x=6x-26 | | 0.52(3y+5)-11=-0.8(6y-7) | | (5x+2)/(x-10)=3 | | 3x-5°-x-15°=90° |