If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20z-1/2z=234
We move all terms to the left:
20z-1/2z-(234)=0
Domain of the equation: 2z!=0We multiply all the terms by the denominator
z!=0/2
z!=0
z∈R
20z*2z-234*2z-1=0
Wy multiply elements
40z^2-468z-1=0
a = 40; b = -468; c = -1;
Δ = b2-4ac
Δ = -4682-4·40·(-1)
Δ = 219184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{219184}=\sqrt{16*13699}=\sqrt{16}*\sqrt{13699}=4\sqrt{13699}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-468)-4\sqrt{13699}}{2*40}=\frac{468-4\sqrt{13699}}{80} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-468)+4\sqrt{13699}}{2*40}=\frac{468+4\sqrt{13699}}{80} $
| 6x-56=4x-12 | | 39/2z=234 | | 3(b–16)=3 | | 3(x-1)(5x-2)=0 | | 3-5(2x+5)+7x=2(1-5x) | | 2w+2(2w+2)=50 | | 4y-5=67 | | 3x+4=8x-28=108 | | 11/6*y-14=-3 | | 8x+36=5x=60 | | 9x-4=x+3 | | y/3+7-7=-4-7 | | 14=2(k-11) | | (X/5)+4=(x/5)+6 | | 6/7q+1/2=7/8 | | 492x-2)=6(3x=2) | | 10+6w=-104 | | X/3+y/9=1 | | 5(t=5)=15 | | -10=-2(d–2) | | 2t-23=-28+t | | 4y-2=62 | | 2a-a-1=8 | | 6x+185=8x=207 | | x+203+13=580 | | 3(q+10)–9=0 | | 16-2t+5t=9 | | 10=2a+7 | | (4+11i)-(-12-12i)=i | | 3x+3(5x-7x=12-x | | 3x+3(5x-7x=12- | | -2p-7+3p=-6 |