21-7(19-x2+6)-3x2+1=0

Simple and best practice solution for 21-7(19-x2+6)-3x2+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 21-7(19-x2+6)-3x2+1=0 equation:



21-7(19-x2+6)-3x^2+1=0
We add all the numbers together, and all the variables
-3x^2-7(-1x^2+19+6)+21+1=0
We add all the numbers together, and all the variables
-3x^2-7(-1x^2+19+6)+22=0
We multiply parentheses
-3x^2+7x^2-133-42+22=0
We add all the numbers together, and all the variables
4x^2-153=0
a = 4; b = 0; c = -153;
Δ = b2-4ac
Δ = 02-4·4·(-153)
Δ = 2448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2448}=\sqrt{144*17}=\sqrt{144}*\sqrt{17}=12\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{17}}{2*4}=\frac{0-12\sqrt{17}}{8} =-\frac{12\sqrt{17}}{8} =-\frac{3\sqrt{17}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{17}}{2*4}=\frac{0+12\sqrt{17}}{8} =\frac{12\sqrt{17}}{8} =\frac{3\sqrt{17}}{2} $

See similar equations:

| √49-2x=27 | | 8j=8+10j | | 206=7x+87 | | 3x-3-2x=2 | | 4u=5u+7 | | P=6y+9+15 | | 4x+3=16-3 | | 3x-27=354 | | 2×-8-5x=4 | | 1/2(4h-6)=-2(-3-2h | | -3t=-4.3 | | 32+4(c-1)=-(4c+5( | | -6(x-1)-7=-7x×2 | | 7=7-x-4 | | 9n+5+8=8+9n | | 200m-100m+47,750=51,000-150m | | (k-8)^2=49 | | n+1/2=15 | | 2x-4=2(3x+8) | | 25x^2=20 | | -2y=y-9 | | 2w^2+5w-64=0 | | 151=66+5x | | 5-(3x+1)=10 | | 17-w=13 | | -148=5x+2(5x-14) | | 95=-47-(4)(t+6) | | n^2=16-6n | | x^2-10x-24.75=0 | | 2h-35=12h-2h+3 | | 20m+0.5(m-4)=9 | | 48=-6r-10r |

Equations solver categories