If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21/3x+10+52/3x-91/2x=121/2
We move all terms to the left:
21/3x+10+52/3x-91/2x-(121/2)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
21/3x+52/3x-91/2x+10-(+121/2)=0
We get rid of parentheses
21/3x+52/3x-91/2x+10-121/2=0
We calculate fractions
(416x+21)/24x^2+(-273x)/24x^2+(-363x)/24x^2+10=0
We multiply all the terms by the denominator
(416x+21)+(-273x)+(-363x)+10*24x^2=0
Wy multiply elements
240x^2+(416x+21)+(-273x)+(-363x)=0
We get rid of parentheses
240x^2+416x-273x-363x+21=0
We add all the numbers together, and all the variables
240x^2-220x+21=0
a = 240; b = -220; c = +21;
Δ = b2-4ac
Δ = -2202-4·240·21
Δ = 28240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28240}=\sqrt{16*1765}=\sqrt{16}*\sqrt{1765}=4\sqrt{1765}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-220)-4\sqrt{1765}}{2*240}=\frac{220-4\sqrt{1765}}{480} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-220)+4\sqrt{1765}}{2*240}=\frac{220+4\sqrt{1765}}{480} $
| 21÷x=-3 | | 16^n=64 | | 6+d÷8=0 | | 10x=8x+36 | | 5+b÷9=2 | | 10a-4+8a+6-2=360 | | 3w+25=8w | | (x+2x)-12=180 | | b÷9+5=2 | | 4j+9=-9+6j | | m/2-12=8 | | 3x-2=202 | | -2(x-5)=-40 | | 4=3r+1 | | 7/10k=3/5 | | 14.9x=18.7 | | (5x+5)+(4x-10)+(4x+15)+(4x+15)+(4x-10)=540 | | -23=5q-13 | | 2x+26=1/2(x+25) | | 16x-9.5=70.5 | | 8-7m=-13 | | (u)=7 | | 10(x+2)=150 | | 12+k÷4=-7 | | (2x+32/5)+(5x-4/5)=7x+23/5 | | n3+4n=240 | | 5x^2-15=35 | | 42+x=-50 | | (3x+13)=(6x-6)+(3x+13) | | -6x+(+5)=13 | | -6x+(+5)=+3 | | 19+2k=-23 |