If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21/4b+3/8b+1=11/8
We move all terms to the left:
21/4b+3/8b+1-(11/8)=0
Domain of the equation: 4b!=0
b!=0/4
b!=0
b∈R
Domain of the equation: 8b!=0We add all the numbers together, and all the variables
b!=0/8
b!=0
b∈R
21/4b+3/8b+1-(+11/8)=0
We get rid of parentheses
21/4b+3/8b+1-11/8=0
We calculate fractions
10752b/2048b^2+12b/2048b^2+(-44b)/2048b^2+1=0
We multiply all the terms by the denominator
10752b+12b+(-44b)+1*2048b^2=0
We add all the numbers together, and all the variables
10764b+(-44b)+1*2048b^2=0
Wy multiply elements
2048b^2+10764b+(-44b)=0
We get rid of parentheses
2048b^2+10764b-44b=0
We add all the numbers together, and all the variables
2048b^2+10720b=0
a = 2048; b = 10720; c = 0;
Δ = b2-4ac
Δ = 107202-4·2048·0
Δ = 114918400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{114918400}=10720$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10720)-10720}{2*2048}=\frac{-21440}{4096} =-5+15/64 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10720)+10720}{2*2048}=\frac{0}{4096} =0 $
| (2x-3)=1.38 | | .296x=446 | | 193=-12r | | n-5n+12=3n^2 | | -17+5x(x-1)=2x-9 | | 6x-3(5x+2)=4(1-x)-3 | | 2x-0+15=0 | | x-6x=13 | | -47=4r-7 | | 2x-0-15=0 | | 8x+6-2=-12+4x+5 | | x+12=x8 | | 2y+90=80 | | 8(3h-7)=-8h+8 | | 9t-1(2t-4)=25 | | 0=7x÷6x | | -16n=144 | | 1.2x-3.44=1.33 | | m/2=-16 | | 2(n-3)=-2+@n | | 28a+24=35a+17 | | 6x-4x+23=39 | | -5-6x=9x-20 | | 48=n/9 | | 4(4x+5=19x+15-3x+5 | | -5(6k+6)=30 | | -5/9x+3x-7/3=2/9 | | 3a-8=12a+5 | | 43-(11x4)+2=22 | | -32+6b=8(-4-6b) | | -5/9x+3x-31/3= | | -3x+12-2x=-2x |