215=8n+(.5n)n

Simple and best practice solution for 215=8n+(.5n)n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 215=8n+(.5n)n equation:



215=8n+(.5n)n
We move all terms to the left:
215-(8n+(.5n)n)=0
We add all the numbers together, and all the variables
-(8n+(+.5n)n)+215=0
We calculate terms in parentheses: -(8n+(+.5n)n), so:
8n+(+.5n)n
We multiply parentheses
n^2+8n
Back to the equation:
-(n^2+8n)
We get rid of parentheses
-n^2-8n+215=0
We add all the numbers together, and all the variables
-1n^2-8n+215=0
a = -1; b = -8; c = +215;
Δ = b2-4ac
Δ = -82-4·(-1)·215
Δ = 924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{924}=\sqrt{4*231}=\sqrt{4}*\sqrt{231}=2\sqrt{231}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{231}}{2*-1}=\frac{8-2\sqrt{231}}{-2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{231}}{2*-1}=\frac{8+2\sqrt{231}}{-2} $

See similar equations:

| -x-7-3x+8=2x-5-3 | | 0.5x0.3=0.15 | | 7(y-8)+24=-550(y-6) | | 9^(4x+8)=6 | | -x-2(8x+1=7x2(1+6x) | | 8-(4(7)+m)=5(7+6)-2 | | 2+x4=-2 | | |3x-10|=5x-6 | | 6x-2=1+2x | | -8x+3(7x+3)=100 | | 13/10y+1/20y-7/4=4/5 | | -18=-3x=6 | | x=7=30 | | 4x+4x=3x+50 | | -3.4=5.2x-5.5x-4.6 | | .10a+a=27 | | (x+5)+(3x-7)=0 | | a+(a×.10)=27 | | ?x7=154 | | 2x+(x+4)=16 | | -11f=-7(7-14f)+5 | | X=12+6t | | 2x-12×=× | | 5(x−8)+6x=−117 | | 3x6=18-20=2 | | k=1/6 | | X+y(100)=110 | | 3(x−5)−2=7(6x+1)+4 | | 3x+6=x+183 | | (2m-7)+(9m+9)=(14+8m) | | 2(w+10=50 | | -8x+2x=10(3+6x)+6(-10x-4) |

Equations solver categories