216=1/2*b*6

Simple and best practice solution for 216=1/2*b*6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 216=1/2*b*6 equation:



216=1/2*b*6
We move all terms to the left:
216-(1/2*b*6)=0
Domain of the equation: 2*b*6)!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
-(+1/2*b*6)+216=0
We get rid of parentheses
-1/2*b*6+216=0
We multiply all the terms by the denominator
216*2*b*6-1=0
Wy multiply elements
2592b*b-1=0
Wy multiply elements
2592b^2-1=0
a = 2592; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2592·(-1)
Δ = 10368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10368}=\sqrt{5184*2}=\sqrt{5184}*\sqrt{2}=72\sqrt{2}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{2}}{2*2592}=\frac{0-72\sqrt{2}}{5184} =-\frac{72\sqrt{2}}{5184} =-\frac{\sqrt{2}}{72} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{2}}{2*2592}=\frac{0+72\sqrt{2}}{5184} =\frac{72\sqrt{2}}{5184} =\frac{\sqrt{2}}{72} $

See similar equations:

| 162.5=r*2.5 | | 15x-15=9x+9 | | 16m+-13m+-4m+5m=-12 | | x=3/4+2/3x | | 7t+2t-6t=15 | | x-3.76=4.79 | | x+1.9=4.97 | | 49=c2 | | 19s-13s=18 | | u+1.12=9.61 | | 121=a2 | | 10z-z=1 | | 145=2x-2 | | v2=144 | | 0.5x+3=0.3x-1 | | 9=p2 | | 145=2x-1 | | 25=a2 | | 145=2x+1 | | 36=s2 | | q+19/8=5 | | 1/4(x-+2)=5/3 | | 49=b2 | | 180=3x+60 | | (n-4)-7=-2n+6 | | 192=90+3x | | -2=4(n-72)-42 | | -90=-5(k+42) | | ½(n-4)-7=-2n+6 | | 1/4x+2=-5/8x/ | | X-0,225y=37,5 | | 20x23=2760 |

Equations solver categories